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Short Communication
One of the problems arising in the analysis of nonlinearly 

deformable structures by 

the finite element method is the acceleration of the convergence 
of step-iterative procedures. In this paper, a method for convergence 
accelerating is considered, based on the use of both static and 
energy correction of the solution.

Equilibrium equations of a structure for a load step can be 
written in the form [1]:
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, ,NL NLK K K        - the stiffness matrices of the zero, first 
and second orders [ ] [ ],uK Kσ  - the matrices of initial displacements 
and stresses  { }u∆ - the vector of increments of nodal displacements 
{ }P∆ - the vector of increments of nodal forces, respectively.

Matrices   for an individual finite element are written as follows 
[2]:
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Where iNLK 
  
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   and I

d

NLK 
       are the direct and differential stiffness 

matrices of the i-th order, n is the number of degrees of freedom of 
a finite element.

Equation (2) means that the j-th row of the matrix can be found 
as the product of the transposed vector of nodal displacements 
by the first derivative of  

iNLK 
  

�   with respect to the j-th degree of 
freedom.

When solving a nonlinear static problem in increments and 
using modified Lagrangian coordinates, equation (1) is written in 
the form:
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,NL NLK K K K u pσ + + + ∆ = ∆                    (3)

We will solve equation (3) by an iterative method of additional 
loading, which is equivalent to using the modified Newton-Raphson 
method:
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where j - the number of the loading step, i - the iteration number 
at this step.

To accelerate the convergence of the iterative process, we use 
the energy relations. The displacement vector determined from the 
equilibrium equations (4) must also satisfy the energy conservation 
law. For each loading step, you can write

    1, 1 1, , 1, 1 1, , 0,j J j j J J j j j j j jW W W A A A− − − − − −+ + + + + =       (5)

where 1, 1 1, 1,j j j jW A− − − − - the work of external and internal forces 
of the initial state on initial displacements, 1, 1,,j j j jW A− −  - the work 
of external and internal forces of the initial state on additional 
displacements { } , ,, ,j j j ji

u W A∆ - the work of additional external and 
internal forces on additional displacements.

For the initial state, the energy conservation law is observed. 
Hence

                             1, 1 1, 1 0,j j j jW A− − − −+ =             (6)

Since the initial state is in equilibrium, then, considering the 
additional displacements to be sufficiently small, based on the 
principle of possible displacements, we can write

                               1 1 0j j j jW A− −+ =                 (7)

Considering (5) - (7), we obtain:

                                 , , 0.J J j jW A+ =                    (8)
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 We require that the solution obtained from (4) at the i-th 
iteration satisfies relation (7), i.e.

                                  ( ) ( )
, , 0i i

j j j jW A+ =                          (9)

To achieve this, we introduce the correction factor “c” as follows:

                                            { } { } .
i i

jj
u c u∆ = ∆                  (10)

Let’s calculate the work of internal forces. As shown in [1]:

                 (2) (3) (4)
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The work of external forces can be found like this:

                              { } { },
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Using relations (10) - (13), we arrive at the algebraic equation:
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          whose coefficients are equal:
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Equation (14), as a rule, has one positive root. However, if there 
are several such roots, then you need to choose the closest to one 
in order to provide the smallest number of equilibrium iterations.

The described above method of convergence acceleration was 
realized in computer program PRINS [3]. The effectiveness of the 
method has been proven in practice.
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